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Application of Three-dimensional Digital Image
Correlation to the Core-drilling Method

by M.J. McGinnis, S. Pessiki and H. Turker

ABSTRACT—We present a non-destructive technique for the
determination of in situ stresses in concrete structures, re-
ferred to as the core-drilling method. The method is similar
to the American Society for Testing and Materials (ASTM)
hole-drilling strain gage method, except that the core-drilling
method is formulated in terms of displacement rather than
strain. Measurements in the current work are performed with
traditional photogrammetry, and the more novel (and more
accurate) three-dimensional digital image correlation. In this
paper we review the background elasticity theory and we dis-
cuss the results of verification experiments on steel plates.
Calculated normal stresses are within 17% of applied values
for photogrammetry, and 7% for three-dimensional digital im-
age correlation.

KEY WORDS—Concrete, core-drilling method, hole-drilling,
digital image correlation, in situ stress, non-destructive eval-
uation, photogrammetry

Nomenclature

a = hole radius
f ′

c = concrete compressive strength
m = radius of measurement circle
r = distance of any point to center of hole
A, B, C, F, H, M, J = material and geometric constants
E = modulus of elasticity
U = measured displacement
ϕ(z), κ(z), ψ(z), Φ(z), Ψ(z) = analytic functions of

complex variable
An, ak, a

′
k = Fourier series coefficients

σx, σy, τxy = in-plane normal and shear stresses
Kx, Ky = in-plane stress gradients
α = angle measured counterclockwise from the x-axis to

the point of interest
u, v = radial and tangential relieved displacements
αi , β, θij , θji = geometrical parameters (see Fig. 1)
φ = Airy stress function
µ = modulus of rigidity
χ = material constant for plane stress and plain strain
υ = Poisson’s ratio
dx, dy, θz = rigid body horizontal, vertical and rotational

displacements
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γ1, γ2, γ3 = rigid body motion scaling factors
� = real algebraic operator

Introduction

Reliable information about the in situstate of stress in the
concrete in an existing structure is often needed as part of the
evaluation of the structure. The evaluation may be performed
as part of the determination of the load rating for the struc-
ture, or to support a decision about the repair or replacement
of the structure. As just one example, information about the
in situ state of stress in a prestressed concrete bridge girder
can be used to estimate the effective prestress remaining in
the girder. This information is useful in predicting the service
load behavior and ultimate strength of the girder.

In this paper we present a theoretical background and
the design and results of verification experiments for a non-
destructive evaluation method to determine the state of stress
in concrete in an existing structure. The method is referred to
as the core-drilling method.1,2 Potential applications of the
method include the determination of in situstress in a variety
of reinforced and prestressed concrete structures, including
bridges, buildings, dams, retaining walls, tunnels, shafts, and
containment vessels.

In the core-drilling method, a circular core hole is cut in to
the concrete in a structure, and the displacements that occur in
the concrete as the hole is cut are measured. These measured
displacements are then related to the in situ state of stress in
the structure. The proposed method is non-destructive since
the ability of the structure to perform its intended function is
not impaired and the core hole is easily repaired. The method
is similar to the American Society for Testing and Materials
(ASTM) hole-drilling strain gage method (ASTM 837, 1994),
which consists of measuring strains at the surface of a speci-
men as a hole is drilled. The ASTM hole-drilling strain gage
method has been the subject of numerous technical publica-
tions, including methods to reduce the dependence of the cal-
culations on material properties,3 to refine the techniques in-
volved for calculation of non-uniform stresses through depth
and utilize the advantages of finite element analysis,3–8 and
to apply the technique to orthotropic materials.9 The hole-
drilling strain gage method is often used to determine resid-
ual stresses in homogenous materials such as metals. Its
applicability to concrete structures is questionable because
the heterogeneous nature of the concrete complicates strain
measurement over small gage lengths. The current research
represents a novel use of a newer class of optical displace-
ment measurement technique, namely three-dimensional
(3D) digital image correlation.10 A random pattern of dots
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Fig. 1—Illustration of the core-drilling method showing
displacement measurement between points i and j

is photographed on the specimen, and by correlating the pat-
terns within versions of the photographs taken before and
after core drilling, deformation information is derived.

Figure 1 illustrates the proposed method. Three points, i,
j , and k, are shown on the surface of the test object. As the
core hole is drilled, each point undergoes a relieved displace-
ment (u and v) relative to the center of the hole, where u
and v are the radial and tangential components of the overall
displacement respectively (additional information shown in
Fig. 1 is discussed in the next section). Measured displace-
ments are the relative displacement between any two of these
three points, and are denoted with a capital U . These mea-
sured displacements are then related to the in situ stresses in
the structure prior to drilling the hole. In practice, the location
and number of measurement points are somewhat arbitrary.
However, at least as many measurements as unknown stresses
must be captured, and the measurement points should be lo-
cated fairly close to the core hole to increase the magnitude
of the observed displacements, and thus the accuracy of the
technique. Any additional measurement points captured pro-
vide redundant data that can potentially be used to improve
the accuracy of the technique.

Theory

Development of Relieved Displacement Equations

Imagine that a core hole is drilled in a structure under stress
and the hole surface is subjected to equal stresses as previ-
ously existed, as shown in Fig. 2(a). The equilibrium of the
body thus remains unchanged from prior to the hole drilling.
In Fig. 2(b), equal and opposite stresses to those on the hole
surface of Fig. 2(a) are applied at the core hole surface. The
loading of Fig. 2(b) can be superposed on Fig. 2(a), resulting
in the stress state after the hole is drilled (Fig. 2(c)). Thus,
the loading and corresponding displacements of Fig. 2(b)
are comparable to the relaxation caused by drilling the hole.
In other words, the displacements caused by the loading in
Fig. 2(b) are the relieved displacements.

(a)

(b)

(c)

Fig. 2—Superposition of loading to find relieved displacement
caused by drilling a core hole: (a) original stress; (b) relieved
in situ stresses; (c) final stress

Elasticity methods treating a small through-hole in an in-
finite, thin plate are used to determine the relationship be-
tween the loads and displacements of Fig. 2(b). Assumptions
made in the derivations presented here are that the material
is linear elastic, isotropic, homogeneous, and that the load is
distributed uniformly through the plate thickness. The prob-
lem is treated as a two-dimensional problem of linear elastic-
ity and solved for plane stress and plane strain assumptions,
similar to the approach of the ASTM hole-drilling strain gage
method, except that displacements rather than strains are the
quantities of interest. Turker and Pessiki1 incorporate finite
elements to investigate the validity or consequences of many
of these assumptions, such as the effects of blind holes, the
effects of plates of finite size, and the effects of stresses that
vary though the thickness of the plate.

This paper treats two related stress states in the plane of
the plate, cases 1 and 2 of Fig. 3. Case 2 shows a stress state
that is linearly varying in-plane, with constant shear stresses.
Case 1 degenerates from case 2 if the normal stress gradients
are taken to be zero. Derivations for case 1 are presented
in detail herein; for case 2, a summary is presented and the
interested reader is directed to Turker and Pessiki.1

The two-dimensional elasticity problem is solved using
the potential function of complex method as outlined by
Muskhelishvili.11 The governing bi-harmonic equation for
an isotropic material

∇4φ = ∂4φ

∂x4 + 2
∂4φ

∂x2∂y2 + ∂4φ

∂y4 (1)

can be solved by finding a bi-harmonic function, φ(x,y),
which satisfies the boundary conditions. If φ(x,y)is expressed
in terms of analytic functions of complex variable

φ(x, y) = �[zϕ(z) + κ(z)], (2)
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Fig. 3—Stress states treated in the core-drilling method: (a) uniform normal and shear stress; (b) biaxial linear normal stress
gradient and uniform shear stress

then Muskhelishvili’s normal and tangential displacement
and stress equations for a polar coordinate system are given
as

2µ(u + iv) = e−iα[χϕ(z) − zϕ′(z) − ψ(z)] (3)

N − iT = Φ(z) + Φ(z) − e2iα[zΦ′(z) + Ψ(z)] (4)

where

ϕ(z) = ∫
Φ(z)dz

ψ(z) = ∫
Ψ(z)dz = dκ

dz

χ = 3−υ
1+υ

χ = 3 − 4υ
for plane stress and plane strain, respectively.

With static equilibrium, it can be shown that for case 1,
the stresses around any circle are

σs = σx − σy

2
sin 2α − τxy cos 2α (5)

σn = σx + σy

2
+ σx − σy

2
cos 2α + τxy sin 2α. (6)

The tractions, N and T , around the core hole can also be
expressed in complex Fourier expansion as

N − iT =
∞∑

−∞
Ane−inα (7)

where the constants An are found by equating terms of like
exponents with their counterparts in eqs (5) and (6), assuming
that the tractions applied to the hole are the inverse of the
stresses expressed in eqs (5) and (6). For case 1, the constants
determined are

A0 = −σx+σy

2

A2 = −σx−σy

2 + iτxy

(8)

all other An = 0.

With complex Fourier series expansion, Φ(z) and Ψ(z)
for a region bounded by a circle are written as

Φ(z) =
∞∑
0

akz
−k

Ψ(z) =
∞∑
0

a′
kz

−k.

(9)

The constants ak and a′
k are determined from the boundary

conditions on the core hole circle and at infinity.
Using eq (7) to express the boundary condition on the hole

(tractions are equal to the N− iT derived) and knowing that
at infinity the stresses should be zero, the coefficients of eq (9)
can be determined by equating terms with like powers of z.
The coefficients thus determined are

a2 =
[
−

(
σx−σy

2

)
− iτxy

]
a2

a′
2 =

(
σx+σy

2

)
a2

a′
4 = −3a4

[(
σx−σy

2

)
+ iτxy

] (10)

all other ak , a′
k=0.

With ϕ(z) and ψ(z) now fully defined, eq (3) is applied to
yield relieved displacements of

u =
(

σx + σy

2

)
A +

(
σx − σy

2

)
B cos 2α + τxyB sin 2α

(11)

v =
(

σx − σy

2

)
C sin 2α − τxyC cos 2α (12)

where

A = a2

2µr

B = a2[r2(1+χ)−a2)]
2µr3

C = a2[r2(1−χ)−a2)]
2µr3 .

Relieved displacements give the displacement of a point rel-
ative to the center of the through-hole. However, in practice,
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a displacement measurement might be taken between two
points, neither of which is the center of the hole, so as to
eliminate the effects of rigid body translations or rotations.
Figure 1 shows a displacement measurement of this type.
The measured displacement between the two measurement
points, i and j , is defined in terms of relieved displacements
as follows

U = ui cos θij − vi sin θij − uj cos θji + vj sin θji (13)

where

θij = αi + β

θji = αj + β

β = π − (αi + αj )
/

2.

Determination of In Situ Stress Equations

To solve for the three unknown stresses of case 1 (σx , σy ,
τxy) or the five unknowns of case 2 (σx , σy , τxy , Kx , Ky),
three and five measured displacements respectively are re-
quired. Either three (or five) equations expressing measured
displacements in terms of in situ stresses must be solved si-
multaneously for the unknown stress quantities. In this paper,
the two measurement configurations shown in Fig. 4 were
used. All measurement points (shown with squares) are lo-
cated on a fictitious measurement circle (shown dotted) some
distance from the edge of the core hole (shown dashed). The
measured displacements between two points are shown with
solid lines in the figure. Using eqs (11) and (12), the measured
displacements for case 1, configuration A, are as follows:

U1 = A(σx + σy) + B(σx − σy) (14)

U2 = A(σx + σy) + 2Bτxy (15)

U3 = A(σx + σy) − B(σx − σy). (16)

Equations (14)–(16) are solved simultaneously for in situ
stresses resulting in

σx = A(U1 − U3) + B(U1 + U3)

4AB
(17)

σy = A(−U1 + U3) + B(U1 + U3)

4AB
(18)

τxy = −U1 + 2U2 − U3

4B
. (19)

The process outlined above (eqs (5)–(19)) for the case 1
stress state with configuration A is repeated for the case 2
stress state in conjunction with configuration B. The resulting
relieved displacement and in situ stress equations are

u =
(
σx+σy

2

)
A +

(
σx−σy

2

)
B cos 2α + τxyB sin 2α

+Kx(F sin α + H sin 3α) + Ky(−F cos α + H cos 3α)

(20)

v =
(
σx−σy

2

)
C sin 2α − τxyC cos 2α

+Kx(M cos α + J cos 3α) + Ky(M sin α − J sin 3α)

(21)

σx =
√

2

8AB

[
A(U1 − U2 − U3 − U4 + 2

√
2U5)

+B(−U1 + U2 + U3 + U4)] (22)

σy =
√

2

8AB

[
A(−U1 + U2 + U3 + U4 − 2

√
2U5)

+ B(−U1 + U2 + U3 + U4)] (23)

τxy =
√

2

8C
[U1 + U2 − U3 + U4] (24)

Kx =
√

2

4(F − H − M − J )
[U1 + U2 + U3 − U4] (25)

Ky =
√

2

4(F − H − M − J )
[U1 − U2 + U3 + U4] (26)

where A, B, and C are as before (eq (13)), and

F = a4

16µr2

H = a4

16µr4

[
r2(χ + 2) − 2a2

]
M = −F

J = a4

16µr4

[
r2(χ − 2) + 2a2

]
.

Verification Experiments

Experimental Details

Two steel plates were tested in tension in these experi-
ments, as shown schematically in Fig. 5. Plate 1 was loaded
in concentric axial tension with a force P to generate a uni-
form stress field. Plate 2 was loaded with a similar axial load
in eccentric tension at the kern point to generate a stress field
that theoretically varies linearly from zero on one edge of the
plate to twice the nominal value at the opposite edge.

The geometry and axial load P applied to plate 1 was
designed to match the relieved displacements in a hypothet-
ical concrete specimen with an in situ uniaxial compression
stress of 13.8 MPa. Steel was used in the experiment instead
of concrete for three reasons: (1) to provide a specimen with
a known elastic modulus; (2) to provide a fine-grained, ho-
mogeneous specimen, thus eliminating any discontinuities
caused by the presence of aggregates; (3) to allow the test to
be performed in tension instead of compression, thereby sim-
plifying the experiment. As noted in the discussion portion
of this paper, ongoing research is involved with studying the
effects of aggregate.

362 • Vol. 45, No. 4, August 2005 © 2005 Society for Experimental Mechanics
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Fig. 5—Schematic diagrams of two test specimens: (a)
plate 1 subjected to industrial photogrammetry; (b) plate 2
subjected to 3D digital image correlation

Table 1 shows a test matrix with the pertinent geometric,
material, and load data from plate 1, plate 2, and the hy-
pothetical concrete structure considered. Figure 6 shows the
anticipated radial (u) and tangential (v) displacements for
the hypothetical concrete structure and the steel test spec-
imen used to represent the hypothetical concrete structure.
The figure shows that the expected displacements of the steel
test specimen closely match the hypothetical concrete spec-
imen in both magnitude and variation around the respective
measurement circles.

An arrangement of bonded wire strain gages (as visible
in Fig. 7) were affixed to each side of each plate to provide
verification of the expected in-plane normal stress quantities
and stress gradients and to verify that there was not undue out-
of-plane bending of the plate. A load cell was incorporated
into the load path to measure load. Figure 7 shows the load
frame used to test the two plates, with plate 1 positioned in the
frame. The plates were gripped at each end by a clevis with a

-20
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D
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Fig. 6—Theoretical radial (u) and tangential (v) relieved
displacements for the hypothetical concrete structure and
representative steel plate for the uniform stress state

single load pin and loaded at one end with a hydraulic jack.
The length of the plates was chosen to ensure that the load
was well distributed in the center test region of each plate.
The plate width was chosen so that the width to core hole
diameter ratio was greater than a specified limit,1 ensuring
behavior similar to an infinite plate and thus avoiding edge
effects. Further details of the experimental setup are given in
McGinnis et al.2

Description of Measurement Techniques

Two displacement measurement techniques were evalu-
ated and are reported here. The displacements were measured
in the plate 1 test with photogrammetry. Photogrammetry is
a 3D coordinate measurement technique that is widely ac-
cepted in industrial applications, although its roots are based
in the field of aerial mapping. Based on triangulation prin-
ciples, photogrammetry uses a series of photographs taken
of the measured object from numerous angles to recreate the
3D coordinates of the targets that are placed on the object.
With many different views of each target, the exact loca-
tion of the target can be triangulated. This triangulation de-
pends on knowledge of the camera’s position and orienta-
tion for each photograph that is analyzed. The three major

© 2005 Society for Experimental Mechanics Experimental Mechanics • 363



TABLE 1—TEST MATRIX INFORMATION
Specimen

Hypothetical
Concrete

Parameter Structure Plate 1 Plate 2
Material Concrete Steel Steel

(f ′c = 55.2 MPa)
a 50.8 mm 28.58 mm 31.75 mm
m 76.2 mm 42.02 mm 44.45 mm
P — 289 kN 267 kN

Eccentricity 0 0 50.8 mm
σx 13.8 MPa 141.2 MPa 135.5 MPa

σy , τxy , Ky 0 0 0
Kx 0 0 0.83 MPa/mm

Fig. 7—Load frame with plate 1 positioned for testing

analytical functions that must be performed to analyze pho-
togrammetric data are (1) triangulation, (2) resection, and
(3) self-calibration of the camera to eliminate errors such
as those due to lens and camera imperfections, temperature,
and humidity effects, etc. The generic term for the simultane-
ous mathematical calculation procedure to accomplish these
three functions is “bundle adjustment”.

Accuracy and precision in industrial photogrammetry are
related to the size of the measured object and numerous other
factors. Some factors that affect the quality of a photogram-
metric survey include the resolution of the captured images,
camera calibration, angles between captured photos, redun-
dancy in the appearance of targets appearing in multiple im-
ages, and the placement of the targets. A current guideline re-
garding accuracy is that a quality survey (i.e., one that meets
accepted standards for the influencing factors noted above,
among others) can yield accuracy in coordinates of approx-
imately one part in 80,000, with 68% probability (1 sigma).
Thus, as an example, for a measured object size of 1 m, one

would expect accuracy in coordinates to 13 µm. However,
typical surveys are of areas often larger than several square
meters. With all other factors equal, the strong dependence
on scale means that industrial photogrammetry applied with
a measured object size substantially smaller than 1 m can
greatly reduce this uncertainty in measured coordinates.

For this study, a non-metric black and white digital camera
with a six megapixel charge-coupled device (CCD) was used
to capture a series of approximately 30 photographs of the
specimen from many different angles at a distance of 1–2 m.
The camera was equipped with a 24 mm manual focus lens.
Custom non-reflective targets were used for this exercise, and
as part of the photogrammetry bundle-adjustment protocol,
the camera was self-calibrated on-site.

The displacements were measured in the plate 2 test with
3D digital image correlation. 3D digital image correlation10

combines techniques of image correlation with the pho-
togrammetric location principles described above, and is
practical only with the advent of high-speed computers. Sam-
ple preparation consists of applying a regular or random pat-
tern with good contrast to the surface of the measured object.
The pattern will then deform with the object under load. The
object is captured in a stereo pair of high-quality cameras
while it is loaded. These two cameras are mounted at either
end of a base bar such that their relative position and orien-
tation with respect to one another is fixed and known. In this
case, many of the photogrammetric principles noted above
reduce to mathematically simpler forms than for classical
photogrammetry. The optimum total angle between the two
cameras is 25◦. Lower angles will reduce the accuracy of
the triangulation, and thus reduce the accuracy of the out-of-
plane (z-axis) coordinates and displacements. Wider angles
increase the accuracy of the z coordinates, but the increased
perspective reduces the useful field of view.

Thousands of unique correlation areas known as facets
(typically 15 square pixels for the system used herein) are
defined across the entire imaging area. The center of each
facet is a measurement point that is tracked, in each succes-
sive pair of images, with accuracy up to one hundredth of
a pixel by employing a similarity measure such as the nor-
malized cross-correlation. An image correlation algorithm,
as for example, the iterative spatial domain cross-correlation
algorithm, tracks facets by maximizing this similarity mea-
sure. The 3D locations of these facets are calculated before
and after each load step, yielding displacements. Tracking
the dense cloud of points within the applied pattern provides
displacement information that is “near” full-field.
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        (a)   (b) 

Fig. 8—Photographs of plates after coring: (a) plate 1 subjected to photogrammetry; (b) plate 2 subjected to 3D digital image
correlation

3D image correlation is often more practical than other
full-field methods that require interferometric stability be-
tween the sensor and test part in order to acquire data. In 3D
image correlation, significant rigid body motions can first
be quantified and then removed. Since strains are calculated
from the derivative of displacement, rigid body motion is
intrinsically eliminated from strain data in 3D image correla-
tion photogrammetry. As long as non-blurred pictures can be
captured, 3D coordinates, displacements, and strains can be
measured. Although not utilized herein, this means that the
technology can be tailored to situations involving measure-
ment in the dynamic environment.

The 3D image correlation system is calibrated using Na-
tional Institute of Standards and Technology traceable cali-
bration panels for each field of view. A sequence of pictures
of the panel at different distances and orientations is cap-
tured and a bundle adjustment used to establish the precise
relationship between the two cameras. Each dot on the cali-
bration panel occupies more than 100 pixels on each camera
sensor, so dot centers can be interpolated to an accuracy of
at least 1/30 of a pixel. The resolution of the technique nec-
essarily follows many of the same prescripts noted above for
industrial photogrammetry, as well as being influenced by
the accuracy of the image correlation algorithm. Since there
are 1280 × 1024 pixels on the Vosskuhler CCD-1300 digi-
tal cameras used for these tests, the overall accuracy of the
system used herein can be conservatively stated as 1/30,000
the field of view. For a 10 mm field of view, for example,
this equates to 0.33 µm displacement sensitivity. The dis-
placement sensitivity scales linearly with the field of view,
decreasing to 3 µm at for a field of view of 100 mm and 30
µm at 1 m, assuming 1280 pixels across the field of view. In
the current work, after calibration of the system on-site, the
image pairs were captured at a distance near 1 m from the
specimen, with a field of view of approximately 150 mm.

Experimental Results

Figure 8 shows photographs of the two plates after coring.
Figure 8(a) is plate 1 subjected to traditional photogrammetry,
and Fig. 8(b) is plate 2 subjected to 3D digital image corre-
lation. Shown in these photographs are the manually placed
discrete targets used in the traditional photogrammetry, and
the “spluttered” spray paint applied for the 3D digital im-
age correlation. Each plate was loaded as described above. A

reading was taken with the given displacement measurement
technique, and then a core hole was cut in the plate. After
coring, a second reading was taken to determine the relieved
displacements.

Figure 9 compares the measured displacements with the
theoretical displacements from both plates. In the figure, rigid
body motions have been removed from each measured dis-
placement quantity. This was accomplished by the subtrac-
tion from the displacement output for each technique of terms
such as γ1dx, γ2dy, and γ3θz, scaled displacements in the hor-
izontal, vertical, and rotational directions respectively. γ1, γ2,
and γ3 were varied to minimize the root sum square difference
between the measured and theoretical relieved displacements.
Note that the subtraction from the relieved displacements of
rigid body translations and a rigid body rotation has no im-
pact on the stress solutions, as eqs (17)–(19) and (22)–(26)
are expressed in terms of measured displacements, i.e., as the
difference between two relieved displacements. For plate 1,
the measurement radius considered was 42 mm, for plate 2,
44 mm. 3D digital image correlation provided displacement
values for thousands of discrete points on the surface of the
plate; only a few are shown here. Further consideration of the
richness of this data set beyond that considered here would
almost certainly improve the accuracy of the stress measure-
ments presented in the following section. In general, good
agreement is obtained between the measured and theoreti-
cal displacements. This suggests that the two measurement
techniques provide acceptable accuracy for the problem of
interest (stresses in concrete).

Equations (17)–(19) and (22)–(26) were applied to plates 1
and 2 respectively to determine the in situ stress in each
plate. Table 2 shows the measured stress quantities for each
plate tested as well as the relative errors in each quantity
versus the applied value. In each case, the measured val-
ues are the results of averaging the stress quantities obtained
from configurationA or B every 15◦ around the measurement
circle.

Discussion

For the plate 1 test, the calculated stress results are within
17% of the applied stress quantities—encouraging for a first
test of the technique. In an actual field test on a concrete
structure, the modulus of elasticity, E, of the concrete would
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TABLE 2—EXPERIMENTAL RESULTS FOR PLATE 1 AND PLATE 2
Stress Results

Magnitude Percentage
Measured (MPa or Difference from

Specimen Quantity MPa/mm) Applied σx or Kx

Plate 1 σx 117.4 –16.9
photogrammetry σy 4.6 3.3

τxy 6.5 4.6

Plate 2 σx 126.3 –6.8
3D digital image σy 6.9 5.1

correlation τxy 1.2 –0.9
Kx 0.56 –32.5
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Fig. 9—Theoretical and measured radial (u) and tangential
(v) displacements from: (a) plate 1; (b) plate 2

be determined from the core taken and would likely be deter-
mined within 10–15%; so these results are certainly within
this uncertainty range. Further, as this was the first use of tra-
ditional photogrammetry for this application, the targets were
placed manually, resulting in a certain amount of relative po-
sitional error that was not accounted for in the equations as
currently conceived. A simple, prefabricated target array that
could be affixed to the specimen would likely improve the
accuracy of the technique.

Excellent results (less than 7% error in normal stress) were
obtained with 3D digital image correlation. The reason for the

relatively high error in the calculation for Kx is unknown at
this time and warrants further study. One possibility is that the
relative magnitude of the relieved displacements due to the
bending (linear gradient) portion of the applied stress field
is significantly smaller than that for the normal (constant)
portion of the applied stress field, and thus the linear gra-
dient terms are more difficult to capture experimentally. As
stated previously, 3D digital image correlation captures thou-
sands of points; however, here only a relative scarcity (<30)
points were used to perform the in situstress calculations. It is
likely that a numerical scheme involving a much larger subset
of the available data would increase the accuracy in the Kx

predictions.
It has been shown in the current paper that photogram-

metry and 3D digital image correlation are robust enough
to capture the expected displacements involved in a typical
concrete structure subjected to the core-drilling method. This
conclusion is drawn based on measurements performed on
specimens made of steel, a fine-grained homogeneous mate-
rial. Ongoing work investigates some of the further compli-
cations of the technique as applied to concrete, among them:

• allowance for moisture induced deflections (e.g.,
swelling from moisture uptake during the wet coring
process);

• allowance for changes in expected stress distributions
due to creep, shrinkage and the presence of steel rein-
forcement; and

• the influence of coarse aggregate size, gradation, and
volume fraction.
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